amjs澳金沙门线路(中国)有限公司-BinG百科
Chinese

Professor

徐香兰

2023-09-04

amjs澳金沙门线路(中国)有限公司-BinG百科


Name: Xianglan Xu

Gender: Female

Job title: Professor

Email Address: xuxianglan@ncu.edu.cn

Education and Work Experience

2021.12-School of Chemistry and Chemical Engineering, Nanchang University, Professor

2019.09-2020.08: University of California, Riverside, Visting scholar; CooperatorProf. De-en Jiang.

2016.12-2021.11College of Chemistry, Nanchang University, Associate Professor

2010.07-2016.11: College of Chemistry, Nanchang University, Lecturer

2005.09-2010.07: College of Chemistry and Chemical Engineering, Fuzhou University, PhD; Advisor: Prof. Junqian Li (now emeritus)

2001.09-2005.07: College of Chemistry and Chemical Engineering, Jinggangshan University, B. S.

Teaching

Undergraduate courses: Structural chemistry, Physical Chemistry, Physical Chemistry Experiments.

Graduate courses: Quantum Chemistry, Catalysis Progress, and Advanced Structural Chemistry

Research fields:

Heterogeneous Catalysis and Computational Chemistry.

Research projects

1. National Natural Science Foundation of ChinaQuantifying the lattice capacity of metal oxide solid solutions: constructing and precisely tuning catalytic active sites, 22062013, 2021-2024.

2. Outstanding Youth Fund in Jiangxi Province, Bandgap of an oxide support tunes metal-support interactions: a novel strategy for CO2 hydrogenation conversion, 20232ACB213002, 2024-2026.

3. Natural Science Foundation of Jiangxi Province, Quantifying the lattice capacity of CeO2-based solid solutions: elucidating the rules on the formation of solid solutions and the capacity effect of catalytic reactivity20212BAB203030, 2021-2023.

4. National Natural Science Foundation of ChinaStudy on CO2 methanation mechanisms and support effect over Ni and Ru supported on metal oxides21666020, 2017-2020.

Awards and Honors

Representative papers and patents

[1] Zhang, Z.; Deng, S.; Fang, X.; Xu, J.; Xu, X.; Wang, X., CrOx-promoted Ru/Al2O3 for CO2 methanation: Formation of surface Cr-doped RuO2 solid solution plays key roles. Fuel 2023, 339, 127414.

[2] Zhang, Z.; Tong, Y.; Fang, X.; Xu, J.; Xu, X.; Wang, X., Interface-dependent activity and selectivity for CO2 hydrogenation on Ni/CeO2 and Ni/Ce0.9Sn0.1Ox. Fuel 2022, 316, 123191.

[3] Liu, Y.; Xu, J.; Jiang, D.-e.; Fang, X.; Wang, X.; Xu, X., Uncovering the Nature of Band Gap Engineering of Adsorption Energy by Elucidating an Adsorbate Bonding Mechanism on Two-Dimensional TiO2(110). J. Phys. Chem. C 2022, 126 (26), 10677-10685.

[4] Xu, X.; Liu, L.; Tong, Y.; Fang, X.; Xu, J.; Jiang, D.-e.; Wang, X., Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 2021, 11, 5762-5775.

[5] Feng, X.; Xu, J.; Xu, X.; Zhang, S.; Ma, J.; Fang, X.; Wang, X., Unraveling the principles of lattice disorder degree of Bi2B2O7 (B = Sn, Ti, Zr) compounds on activating gas phase O2 for soot combustion. ACS Catal. 2021, 11, 12112-12122.

[6] Zhang, H.; Zhang, Z.; Liu, Y.; Fang, X.; Xu, J.; Wang, X.; Xu, X., Band-gap engineering: a new tool for tailoring the activity of semiconducting oxide catalysts for CO oxidation. J. Phys. Chem. Lett. 2021, 12, 9188-9196.

[7] Xu, X.; Wang, X.; Jiang, D.-e., Band gap as a novel descriptor for the reactivity of 2D Titanium dioxide and its supported Pt single atom for methane activation. J. Phys. Chem. Lett. 2021, 12, 2484-2488.

[8] Xu, X.; Tong, Y.; Huang, J.; Zhu, J.; Fang, X.; Xu, J.; Wang, X., Insights into CO2 methanation mechanism on cubic ZrO2 supported Ni catalyst via a combination of experiments and DFT calculations. Fuel 2021, 283, 118867.

[9] Xu, X.; Zhang, H.; Tong, Y.; Sun, Y.; Fang, X.; Xu, J.; Wang, X., Tuning Ni3+ quantity of NiO via doping of cations with varied valence states: The key role of Ni3+ on the reactivity. Appl. Surf. Sci. 2021, 550, 149316.

[10] Xu, X.; Tong, Y.; Zhang, J.; Fang, X.; Xu, J.; Liu, F.; Liu, J.; Zhong, W.; Lebedevad, O. E.; Wang, X., Investigation of lattice capacity effect on Cu2+-doped SnO2 solid solution catalysts to promote reaction performance toward NOx-SCR with NH3. Chin. J. Catal. 2020, 41, 877-888.

[11] Wang, D.; Huang, J.; Liu, F.; Xu, X.; Fang, X.; Liu, J.; Xie, Y.; Wang, X., Rutile RuO2 dispersion on rutile and anatase TiO2 supports: The effects of support crystalline phase structure on the dispersion behaviors of the supported metal oxides. Catal. Today 2020, 339, 220–232.

[12] Liu, K.; Xu, X.; Xu, J.; Fang, X.; Liu, L.; Wang, X., The distributions of alkaline earth metal oxides and their promotional effects on Ni/CeO2 for CO2 methanation. J. CO2 Util. 2020, 38, 113-124.

[13] Xu, X.; Liu, F.; Huang, J.; Luo, W.; Yu, J.; Fang, X.; Lebedeva, O. E.; Wang, X., The Influence of RuO2 Distribution and Dispersion on the Reactivity of RuO2−SnO2 Composite Oxide Catalysts Probed by CO Oxidation. ChemCatChem 2019, 11 (10), 2473-2483.

[14] Huang, J.; Li, X.; Wang, X.; Fang, X.; Wang, H.; Xu, X., New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: Elucidating Ni and MgO roles and support effects. J. CO2 Util. 2019, 33, 55-63.

[15] Xu, X.; Li, L.; Huang, J.; Jin, H.; Fang, X.; Liu, W.; Zhang, N.; Wang, H.; Wang, X., Engineering Ni3+ Cations in NiO Lattice at the Atomic Level by Li+ Doping: The Roles of Ni3+ and Oxygen Species for CO Oxidation. ACS Catal. 2018, 8 (9), 8033-8045.

1